Viet-Anh on Software Logo

What is: Detection Transformer?

SourceEnd-to-End Object Detection with Transformers
Year2000
Data SourceCC BY-SA - https://paperswithcode.com

Detr, or Detection Transformer, is a set-based object detector using a Transformer on top of a convolutional backbone. It uses a conventional CNN backbone to learn a 2D representation of an input image. The model flattens it and supplements it with a positional encoding before passing it into a transformer encoder. A transformer decoder then takes as input a small fixed number of learned positional embeddings, which we call object queries, and additionally attends to the encoder output. We pass each output embedding of the decoder to a shared feed forward network (FFN) that predicts either a detection (class and bounding box) or a “no object” class.